
Buggy Software and Missile Defense
Mark Halpern

FALL 2005 ~ 47

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

Since the days when the proposed Anti-Ballistic Missile (ABM) system
was derisively called “Star Wars,” one of the principal arguments against
it has been that it would require a degree of software perfection that is
simply not achievable. Some of the world’s preeminent computer scien-
tists—like David L. Parnas, now of the University of Limerick—have been
saying this for years, and their views have been widely publicized in both
the technical and popular press. Their argument is straightforward and
even plausible: a software system of the necessary size and complexity for
missile defense would be paralyzed by bugs, impossible to test thoroughly,
and certain to be overwhelmed by the complications and distractions that
an attacker could easily throw at it. Opponents like to characterize missile
defense as “trying to hit a bullet with a bullet,” as if doing so is obviously
impossible.

Of course, these software arguments against the ABM project are not
the only ones its opponents mount against it; there are a number of other
technical issues, not to mention various political and economic ones. But
the software problem is serious enough, visible enough, and interesting
enough to address here—both to correct our reigning confusions about
software in general and to demonstrate that the software case against
missile defense is ultimately flawed.

Is Software Inherently Buggy?

I am hardly blind to the problems of buggy software. I have been pro-
gramming and designing software for close to fifty years, and the practice
and theory of debugging has occupied a great deal of that time. I started
writing about the problem of buggy code as long ago as 1965, and one
of my dicta in an early paper attained some currency: “That tendency
to err that programmers have been noticed to share with other human
beings has often been treated as if it were an awkwardness attendant
upon programming’s adolescence, which like acne would disappear with

Mark Halpern has been working in and with computer software for fifty years, starting out
with IBM’s Programming Research Department just after the release of Fortran, and going
on to work for several other companies, including Lockheed Missiles & Space Company, tiny
Silicon Valley startups, and then IBM again. He lives in the hills of Oakland, California,
with his wife and daughter. His website is www.rules-of-the-game.com.

http://www.thenewatlantis.com
http://www.thenewatlantis.com

48 ~ THE NEW ATLANTIS

MARK HALPERN

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

the craft’s coming of age. It has proved otherwise.” And like anyone who
uses computers daily, I have more stories than I’d like to recount about
software crashes at inopportune moments. So: If I reject the view that
software problems make ABM impossible, it is not because I naïvely think
that software problems in general are not real.

Everyone knows that almost all commercially marketed software is
buggy, certainly when first released, and often even after years of use. We
have all been told that we cannot find out whether a certain check has
cleared because “the computer is down,” or that our motel reservation was
lost because of “a computer glitch,” and we know this usually means that
the software has failed. Such experiences have turned us all into computer
cynics, rolling our eyes at claims by software manufacturers emphasiz-
ing their products’ reliability and freedom from crashes. And many of
us—including some professors of computer science—have concluded that
software bugginess is an inherently intractable problem, and that it will
remain so until some great intellectual breakthrough occurs.

This conclusion is wrong. Computer software, far from being intractable,
is the most docile, well-behaved tool ever developed. It can be tested non-
destructively, it can be repaired cheaply and on a piecemeal basis, it never wears
out, and—most importantly—it responds to identical inputs under identical
conditions with absolutely identical outputs, forever. No hardware artifact
offers behavior so totally consistent and so amenable to testing and repair. And
none, for just those reasons, offers more potential reliability and perfectibility.

Some critics, like Parnas, have argued that software lacks dependability.
In a 1990 article, for example, he and colleagues claim that “within the
engineering community software systems have a reputation for being
undependable.” True, software systems have a reputation for taking three
times longer to complete than predicted at their outset, and costing more
by an even higher factor. But undependability is not part of software’s
Original Sin. Once some real-world experience is acquired in the use of
such a system, it is usually one of the most dependable components of
any engineering project. Those experienced in such matters, who under-
stand that dependability means not “ability to guess what I want” but
“consistency in reacting to given inputs,” will have no trouble in deciding
between Parnas’s view and my own.

Of course, the malleability of software constantly tempts us to revise
it, and we succumb to temptation frequently, with the result that the soft-
ware instantly and without warning reverts to pre-release condition, with
all the shakiness that implies. And of course, those who write software for
the consumer market often yield to the inevitable pressure to release a

http://www.thenewatlantis.com

FALL 2005 ~ 49

BUGGY SOFTWARE AND MISSILE DEFENSE

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

software product before it is really ready to be put into customers’ hands.
But it is unreasonable to call software undependable when what we mean
is that we are undisciplined. We are the enemy; we take advantage of
software’s amenability to modification, as well as the unlikelihood that
customers will discover the bugs in certain less-frequented paths through
our code, at least before the warranty period is over. That we can behave
as badly as we do, and still turn out products that mostly work, is a tribute
to software’s outstanding dependability.

In addition, confusion about software is caused by the completely sub-
jective way in which we use terms like expensive or complex—a way that
makes them simply indicators of our feelings at the moment, rather than
saying something useful about the objects we’re contemplating. If we say
that a piece of software is expensive when its function could not be realized
in any other way, what metric are we tacitly appealing to? We must be com-
paring the cost of the software to something, since it makes no sense to call
anything expensive absolutely. Consider the following thought experiment:
Can you give a simple yes-or-no answer to the question, “Is $1,000 a lot of
money?” Would your answer be the same regardless of whether the ques-
tion continued “for a beachfront house in Malibu” or “for a peanut butter
sandwich” or “for Aladdin’s Lamp”? In much the same way, absolute charac-
terizations of software as expensive are nonsense; what they usually signify
is our disappointment with our own performance as project managers and
programmers, and our need to find someone or something to blame.

We also speak subjectively of complexity. When we first learn how to
drive, for example, we are overwhelmed by the apparent complexity of a
car’s controls, let alone the bewildering chaos of traffic; after a few years of
driving, we step into a rental car of a make and model we’ve never handled
before and drive away in thirty seconds without hesitation. Similarly, the
computer seems at first formidably complex; later it will seem so simple—
and simple-minded—that we will have to remind ourselves not to kick it.

Even experts who should know better speak loosely of complexity in
the context of software. In the article mentioned above, Parnas and his co-
authors say, “The most immediately obvious difference between software
and hardware technologies is their complexity”—meaning, as the context
makes clear, that software is much more complex than hardware. They are
wrong. The programmable computer is, in an important respect, the simplest
machine man has ever invented: it is the simplest way of achieving virtually
any functionality that can be expressed as an algorithm. That simplicity
may not be evident to inspection or intuition, but quickly becomes evident
by comparing its cost-per-function with that of any possible alternative.

http://www.thenewatlantis.com

50 ~ THE NEW ATLANTIS

MARK HALPERN

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

For the class of functions that we program computers to perform—such as
word processing, massive computation, searching through huge databases,
and the generation of graphics—the software that performs those tasks
is incomparably easier to create, more testable, and more reliable than the
equivalent hardware (if such hardware could even exist).

To be sure, we often build software objects that are very complex and
troublesome—not compared with some other way of realizing their func-
tionality, but by the standard of what we humans can control and remember.
This is a consequence not of software’s supposed intrinsic complexity, but
of human insistence on pushing everything to the limit. That we often get
into trouble using so simple a technology is not a reflection on the technol-
ogy, but a reminder of man’s permanent role as troublemaker. Given any
new tool or technique, we extend it until we make a mess of things; that’s
been our way since we ate the apple, and we’ll be doing it when we storm
heaven. Calling software complex is rather like calling bricks complex
because, using them, we can construct bizarre and bewildering labyrinths.

In the end, the only rational basis for measuring the relative complexity
of software and hardware is function-by-function—that is, by comparing the
costs of realizing well-defined functions using each of the competing tech-
nologies. Since this is an exercise we are unlikely to carry out in reality, we
can only run a thought experiment—but that is all that should be necessary.
Microsoft Word occasionally crashes or does strange, inexplicable, unde-
sirable things. But consider what kind of machine we would have to build
and maintain to realize Word’s functionality in hardware. Most likely, that
application would not exist at all, because the necessary hardware would be
too difficult and too expensive to build. A great many comparisons between
software and hardware are invalidated by the same consideration.

The Demand for Buggy Software

But if software is as docile and simple as I contend, why are programs
so buggy? A general answer has already been given: because it is human
nature to push until we get into trouble—and then blame our tools. We
load the elephant with feathers until the elephant collapses, whereupon
we conclude that feathers are too heavy for elephants. No matter how
amenable software is to our efforts, it can overwhelm us if we pile the code
high enough—and we often do, because it’s so fatally easy. But the special
reason for software’s bugginess is that we almost never demand that it be
bug-free (I use “demand” here in the economist’s sense: not just desire, but
desire backed up by ability and readiness to pay).

http://www.thenewatlantis.com

FALL 2005 ~ 51

BUGGY SOFTWARE AND MISSILE DEFENSE

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

Software manufacturers are rational economic actors; if they can sell
us software without going to the expense of thoroughly debugging it,
they will. The copy of Microsoft Word that occasionally drives me crazy
cost around $200; if Microsoft had been forced to debug it thoroughly
before releasing it, its price would be closer to $2,000. Would I pay that
much for a version that I could be sure would never crash at a critical
moment, losing hours or days of my work? Probably not; apparently, I
don’t value my sanity that highly. I am neither blaming anyone nor apolo-
gizing for anything; I am simply reporting Microsoft’s behavior and mine,
in the belief that they are typical of just about all software developers and
computer users. In a word, we have buggy software because we consum-
ers won’t pay what effectively bug-free software would cost.

The reasons why software is almost always buggy are not inherent
in the technology and thus inevitable, but spring from human choices
and practices that we can understand and could change if there were a
compelling reason to do so. Those habits include piling the code on until
it overwhelms us, and taking our chances with buggy software in order
to get it more cheaply. Both problems could be overcome if we wanted to
overcome them badly enough. And in building an ABM system designed
to guard us against missiles carrying nuclear warheads, we would surely
want to.

In asserting that the reasons for the prevalence of buggy software
lie in human habits and choices rather than in the nature of software, I
find support from an unexpected quarter: Parnas himself. In an interview
given in 1999, he related this anecdote about his experience as a consul-
tant to industry:

Interviewer: What are the most exciting/promising software engi-
neering ideas or techniques on the horizon?

Parnas: I don’t think that the most promising ideas are on the hori-
zon. They are already here and have been here for years but are not
being used properly. A few years ago, I met an experienced software
development manager who had just uncovered a memo I wrote for his
company in 1969. He told me, “If we were now doing what you told us
then, we would be far ahead of where we are now.” The biggest payoff
will not come from new research but from putting old ideas into prac-
tice and teaching people how to apply them properly.

His story is one that many consultants to the computer industry could
echo: again and again, they have shown clients how they could turn out

http://www.thenewatlantis.com

52 ~ THE NEW ATLANTIS

MARK HALPERN

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

far better, more reliable products, and again and again those clients, while
conceding the technical merit of the recommendations they have paid so
much for, have failed to implement them. I emphasize again that this is
not a criticism of either the consultants or of the companies that seek and
then disregard their advice. The managers of the companies involved have
many factors to weigh in deciding whether to implement such proposals,
and those who are unfamiliar with the particulars of a given company’s
situation should not presume to fault them for their decisions. Maybe the
company alluded to by Parnas would have gone bankrupt if it had tried to
implement, then and there, the recommendations he made in 1969. The
larger point is that the path to better software, even effectively bug-free
software, has been clearly marked for a long time; what has been lacking
is not some technical breakthrough, but the will and the means to take
that path.

You Get What You Pay For

And this brings us to the specific question of missile defense. If I am cor-
rect, there is nothing intrinsically problematic about building the necessary
software, as ABM opponents like Parnas imply. We can have software that
is virtually perfect if we are willing to pay for it, and the U.S. government
surely has the resources to do so for so important an objective. If software
is created not for sale but for national survival, and if its development is
supported by resources commensurate with that objective, there is no rea-
son why it should not be virtually bug-free and thus the least troublesome
part of an ABM system. The project would require a large initial invest-
ment, and it would take far longer to produce its first line of code than
the conventional method of producing software for a mass market, begin-
ning with a long period of constructing tools and test-beds. Yet precisely
because it enjoyed the use of those tools and tests, it might very well finish
no later than a conventional software project of comparable size. And it
might even prove to be a money-saver in the long run, once we consider all
the expensive problems that the user code so produced would not exhibit
during its lifetime, and once we take into account the uses for all that ini-
tial tooling and test-building on other projects.

This is not, incidentally, just a plea for more care or “good practices”
in software development; I have in mind very specific, concrete steps to
achieve thoroughly debugged software products. There is a long history
of serious studies and proposals on how to build really robust software.
But like the one Parnas made as a corporate consultant, they were never

http://www.thenewatlantis.com

FALL 2005 ~ 53

BUGGY SOFTWARE AND MISSILE DEFENSE

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

implemented because there was no demand for robust software at the
price it would have cost. These studies began appearing as long ago as
Douglas McIlroy’s proposal in 1968 for the development of reusable soft-
ware modules, followed by the proposal by the late Robert W. Bemer (one-
time Director of Software Standards at IBM) for a Software Factory; they
are still being refined today, as in my own Assertive Debugging System
proposal, recently described in a leading programming journal (“Assertive
Debugging: Correcting Software As If We Meant It,” Embedded Systems
Programming, June 2005).

Profit-making companies, worried about how Wall Street will view
this quarter’s results, may seldom if ever find a business case for making
the initial investment necessary to move to such systems or methodolo-
gies; the richest nation on Earth, trying to protect itself from a terrible
disaster, might well employ other criteria than that of short-term return
on investment in deciding how much it should invest—just as it did, for
example, when it created the Manhattan Project. But is missile defense
a sensible response to the threats and challenges of today’s geopolitical
world? And what impediments, beyond software troubles, still stand in the
way? I have neither the expertise nor the space to give full and adequate
answers to these questions. But I can at least try to correct some grave
technical misconceptions.

Can We Hit a Bullet with a Bullet?

Opponents of the ABM project frequently claim that any enemy techni-
cally advanced enough to mount a missile attack would also be advanced
enough to incorporate many kinds of dummy warheads and decoys into
that attack, forcing us to try to shoot down an impossible number of
objects in an attempt to destroy all the real warheads. And even though the
tests run so far have shown more than once that an ABM can intercept a
target missile following a trajectory of the kind that would be taken by an
actual intercontinental missile, we are still told that the ABM system, in
attempting the supposedly quixotic feat of “hitting a bullet with a bullet,”
is doomed to failure. To this claim there are several counter-arguments:

1. Most of the ABM tests to date have been conducted under so many
arbitrary constraints, such as the technical handicaps imposed by trea-
ties and other political considerations, that the wonder is that they have
been as successful as they have. The kind of ABM system that the United
States will be able to deploy, freed of such constraints and allowed to use
all its technological muscle, should be far better than the crippled systems

http://www.thenewatlantis.com

54 ~ THE NEW ATLANTIS

MARK HALPERN

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

displayed so far. That even the rudimentary system so far tested has been
able several times to destroy its target is a most promising indication.

2. It is by no means obvious that a nation or group possessing a few
ballistic missiles would also have dummies and decoys. These deceptive
devices are far from simple to design, construct, test, and deploy; those
that try to mimic warheads may have to be in some ways more sophisti-
cated than the warheads themselves. They are also expensive. Insofar as
the proposed ABM system is simply a defense against “rogue states” such
as North Korea or Iran, it should be able to do its job for some years to
come without worrying about advanced forms of deception.

3. “Hitting a bullet with a bullet” is good sloganeering, but noth-
ing more. Its effectiveness lies in its ability to plant a false picture in our
minds: it suggests a human marksman attempting an utterly superhuman
feat. But the feat of hitting a bullet with a bullet—already success-
fully done several times, with far from optimum systems—is in fact not
 particularly difficult for a computer-based system, which in this respect
is superhuman. A bullet or other purely ballistic missile is one that fol-
lows a predetermined course, a course that can be predicted with great
accuracy from just a few observations. And the bullet that is fired at that
bullet—the ABM—is another such purely ballistic missile until its final
moments, when it is freed to make whatever last-minute adjustments in its
course may be necessary if it is to come within lethal distance of its target.
This is exactly the kind of work that computers are good at: predicting
the course that an enemy missile will take, and determining the course
that an ABM must follow in order to intercept it. In fact, every time we
launch an artificial satellite into its prescribed orbit, or send astronauts
up to the International Space Station, or send a probe to explore the rings
of Saturn or hit a comet, we are doing something comparable to “hitting
a bullet with a bullet”—and we succeed so routinely that our newspapers
put the stories back on page 27.

4. The kind of computation ABM computers will have to do is well
understood. They will be called on to process inputs from sensors such
as radar and infrared detectors, deriving from those data the positions
and momenta of objects either in powered trajectories or in free fall.
This processing will predict where those objects will be at later times,
and where other such objects—or beams of energy or particles—must be
directed in order to intercept them. This is a kind of processing in which
we have a great deal of experience, and which requires no scientific break-
throughs or even much new software. There are certainly some stringent
requirements that ABM computers must meet, but they do not involve

http://www.thenewatlantis.com

FALL 2005 ~ 55

BUGGY SOFTWARE AND MISSILE DEFENSE

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

the generation of much new code. The first requirement is speed—these
computations will have to be performed faster, probably several orders of
magnitude faster, than the relatively leisurely computations required by
a mission to the Moon, for example. The second requirement is radiation
resistance. Insofar as the computers and other electronics are located out-
side the Earth’s atmosphere, they will be subject to ionizing radiation that
would be destructive to devices built of ordinary, home computer-grade
components. These two requirements are imposed on the hardware—a
technology where we are making rapid progress, and may have made
enough progress already—and not on the software, where masses of fresh
code, if conventionally generated, would mean a swarm of new bugs.

5. The bullet-hitting-a-bullet argument is beside the point in another
way, too. ABM research and development is being devoted not only to hit-
to-kill weapons that would have to intercept an enemy missile or warhead
by hitting it directly, and when in full stride, but also to ABM weapons
that would not have to meet even those requirements. These alternative
ABM weapons would attack enemy missiles when they are much more
vulnerable (i.e., during their lift-off phase, when they would be moving
relatively slowly, and still over enemy territory); with a laser beam, which
flies straight and at the speed of light; or with weapons that do not dis-
tinguish between warheads and decoys but simply detonate with enough
force to destroy any targets, real or decoy, within a sphere of such large
radius that pinpoint accuracy would be unnecessary.

In the end, the technical problems posed by an ABM system are of
the kind that the United States, in particular, has always been good at
handling. Large-scale, highly ambitious engineering projects are our
specialty—think of the Panama Canal, the transcontinental railroad, the
Manhattan Project, the Polaris Submarine-Launched Missile project, the
Apollo lunar landing, the International Space Station, the Hubble Space
Telescope. What’s more, we have a history of success with military or
space engineering projects that involve huge amounts of programming—
such as the space shuttle, the Cassini probe of Saturn, and various manned
and unmanned military aircraft. Why should we believe that the country
that succeeded in all of these will not succeed also in the development of
an ABM system, if it decides to do so?

A Time to Act

A technology like missile defense must take its direction from policymakers,
who must grapple with defining the nature of current threats and discern-

http://www.thenewatlantis.com

56 ~ THE NEW ATLANTIS

MARK HALPERN

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

ing the wisest use of resources to meet those threats. During the Cold
War, the point of an ABM system was largely deterrence; its “success”
depended less on its capacity to shoot down missiles and more on its
capacity to convince the Soviet Union that it could shoot down missiles.
Today, our threats are perhaps less well-defined, and thus the political
and strategic purpose of missile defense is perhaps more multifaceted.
We want a system that deters enemy states from an attack, a system that
deters rogue actors from investing huge sums of money on missiles that
may prove futile, and a system that actually does what it is programmed
to do, if and when a non-deterrable actor attacks us.

It is commonly urged that there are many dimensions to the ABM
project and many consequences that cannot now be foreseen. But these
caveats and warnings apply to any possible handling of the security
threats that the ABM proposal is meant to deal with—including doing
 nothing, relying on diplomacy and treaties (conceived as an alternative
to weaponry, offensive or defensive), promoting democracy abroad, or
disarming unilaterally. We have to do something, and that something must
be determined by the best information we have at our disposal. I submit
that the best information we have today supports proceeding aggressively
with missile defense:

1. There is every reason to expect the technology will work. The
ABM project is of exactly the sort that we have succeeded with in the
past. No major scientific breakthroughs are required, and no large amount
of new software need be written.

2. The ABM system’s reliance on software is not a weakness but a
strength. Software, unlike hardware, is perfectly stable; once debugged,
it will remain in that state long after every hardware component of the
system has rusted or otherwise deteriorated. And getting it debugged—
which means not the logically impossible task of proving it free of defects,
but building it with tooling that precludes whole classes of common bugs
at the outset, and testing it as thoroughly as human ingenuity and per-
sistence is capable of—is just a matter of devoting sufficient resources to
the task.

3. It is true that a missile defense system cannot be tested in a totally
realistic way—which is to say, we aren’t going to provoke a hostile coun-
try into launching an attack on us just to see if our defense works. In this
respect, missile defense is just like all other proposals for defending our-
selves against attack from weapons of mass destruction. But such “perfect”
testing is not necessary. By creating the necessary software with the help
of the advanced development methods mentioned earlier, and applying the

http://www.thenewatlantis.com

FALL 2005 ~ 57

BUGGY SOFTWARE AND MISSILE DEFENSE

Copyright 2005. All rights reserved. See www.TheNewAtlantis.com for more information.

most exhaustive testing our resources permit, we can develop an effec-
tive missile defense system—one with a likelihood of success in action
 sufficient to deter any rational enemy, and with a reasonable chance of
providing protection in the event of attack by an irrational one. That is
all that any defensive system can be asked to do.

Without question, software is not the only technical barrier to an
ABM system. But only by setting the software objections aside, once and
for all, can we sharpen our critical gaze on the real challenges before us.
As a technological matter, we may now have the power to protect our
country from the kind of attack that several of our enemies have already
threatened; as a political matter, failing to do so would be a mistake of
tragic proportions.

http://www.thenewatlantis.com

