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Causation has long been something of a mystery, bedeviling philosophers 
and scientists down through the ages. What exactly is it? How can it be 
measured — that is, can we assess the strength of the relationship between 
a cause and its effect? What does an observed association between fac-
tors — a correlation — tell us about a possible causal relationship? How do 
multiple factors or causes jointly influence outcomes? And does causation 
even exist “in the world,” as it were, or is it merely a habit of our minds, a 
connection we draw between two events we have observed in succession 
many times, as Hume famously argued? The rich philosophical literature 
on causation is a testament to the struggle of thinkers throughout history 
to develop satisfactory answers to these questions. Likewise, scientists 
have long wrestled with problems of causation in the face of numerous 
practical and theoretical impediments.

Yet when speaking of causation, we usually take for granted some 
notion of what it is and how we are able to assess it. We do this when-
ever we consider the consequences of our actions or those of others, the 
effects of government interventions, the impacts of new technologies, the 
consequences of global warming, the effectiveness of medical treatments, 
the harms of street drugs, or the influence of popular movies. Some causal 
statements sound strong, such as when we say that a treatment cured 
someone or that an announcement by the government caused a riot. 
Others give a weaker impression, such as when we say that the detention 
of an opposition leader affected international perceptions. Finally, some 
statements only hint at causation, such as when we say that the chemical 
bisphenol A has been linked to diabetes.

In recent years, it has become widely accepted in a host of diverse 
fields, such as business management, economics, education, and medi-
cine, that decisions should be “evidence-based” — that knowledge of 
outcomes, gathered from scientific studies and other empirical sources, 
should inform our choices, and we expect that these choices will cause 
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the desired results. We invest large sums in studies, hoping to find causal 
links between events. Consequently, statistics have become increasingly 
important, as they give insight into the relationships between factors in a 
given analysis. However, the industry of science journalism tends to dis-
tort what studies and statistics show us, often exaggerating causal links 
and overlooking important nuances.

Causation is rarely as simple as we tend to assume and, perhaps for 
this reason, its complexities are often glossed over or even ignored. This 
is no trifling matter. Misunderstanding causal links can result in ineffec-
tive actions being chosen, harmful practices perpetuated, and beneficial 
alternatives overlooked. Unfortunately, the recent hype about “big data” 
has encouraged fanciful notions that such problems can be erased thanks 
to colossal computing power and enormous databases. The presumption 
is that sheer volume of information, with the help of data-analysis tools, 
will reveal correlations so strong that questions about causation need 
no longer concern us. If two events occur together often enough, so the 
thinking goes, we may assume they are in fact causally linked, even if we 
don’t know how or why.

As we will see, understanding causation as best we can remains indis-
pensable for interpreting data, whether big or small. In this essay we will 
mostly leave aside the rich and complex philosophical literature on causa-
tion, instead focusing our attention on more practical matters: how we 
should think about causation and correlation in medicine, politics, and our 
everyday lives. We will also discuss some remarkable advances in thinking 
about cause-and-effect relationships, advances made possible by a conflu-
ence of ideas from diverse branches of science, statistics, and mathematics. 
Although in-depth understanding of these developments requires special-
ized technical knowledge, the fundamental ideas are fairly accessible, and 
they provide insight into a wide range of questions while also showing 
some of the limitations that remain.

Puzzles of Causation
Let us begin with a familiar example. We know that smoking causes lung 
cancer. But not everyone who smokes will develop it; smoking is not a 
sufficient cause of lung cancer. Nor is smoking a necessary cause; people 
who do not smoke can still develop lung cancer. The verb “to cause” often 
brings to mind unrealistic notions of sufficient causation. But it is rare 
that an event has just one cause, as John Stuart Mill noted in A System of 
Logic (1843):
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It is seldom, if ever, between a consequent and a single antecedent that 
this invariable sequence subsists. It is usually between a consequent 
and the sum of several antecedents; the concurrence of all of them 
being requisite to produce, that is, to be certain of being followed by, 
the consequent.

Based on similar insights in a number of fields, including philosophy, law, 
and epidemiology, scholars have in recent years proposed models of jointly 
sufficient causation to show how multiple causes can be responsible for one 
outcome. It has become common with the help of such models to express 
causation in terms of probability: when just one factor, such as smoking, 
is known to have a probable influence on an effect, any impression of suf-
ficient causation can be avoided by simply saying that smoking “promotes” 
lung cancer. Probability modeling can be seen as a strategy for simplifying 
complex situations, just as models in mechanics involve simplifications like 
objects falling in a vacuum or sliding down a frictionless plane.

The occurrence of lung cancer may depend on numerous factors 
besides smoking, such as occupational exposure to hazardous chemicals, 
genetic predisposition, and age. Some factors may be entirely unknown, 
and others poorly understood. In many cases, measurements of some fac-
tors may not be available. Thinking of causation in terms of probability 
allows us to simplify the problem by setting aside some of these factors, 
at least tentatively.

Ironically, a leading opponent of the claim that smoking causes lung 
cancer was geneticist Ronald A. Fisher, one of the foremost pioneers of 
modern statistical theory. A number of studies showed an association 
between smoking and lung cancer, but Fisher questioned whether there 
was enough evidence to suggest causation. (Although technical distinc-
tions between correlation and association are sometimes made, these 
terms will be used synonymously in this essay.) Fisher pointed out, for 
instance, that there was a correlation between apple imports and the 
divorce rate, which was surely not causal. Fisher thereby launched a cot-
tage industry of pointing out spurious correlations.

The fact that Fisher was himself a smoker and a consultant to tobacco 
firms has at times been used to suggest a conflict of interest. But even if 
he was wildly off base regarding the link between smoking and lung can-
cer, his general concern was valid. The point is often summed up in the 
maxim, “Correlation is not causation.” Just because two factors are corre-
lated does not necessarily mean that one causes the other. Still, as Randall 
Munroe, author of the webcomic xkcd, put it: “Correlation doesn’t imply 
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causation, but it does waggle its eyebrows suggestively and gesture fur-
tively while mouthing ‘look over there.’” We are tempted to think of cor-
relation and causation as somehow related, and sometimes they are — but 
when and how?

The modern debate over correlation and causation goes back to at least 
the mid-eighteenth century, when Hume argued that we can never directly 
observe causation, only “the constant conjunction of two objects.” It is 
perhaps not surprising that scientists and philosophers have had mixed 
feelings about causation: on the one hand it appears to be central to the 
scientific enterprise, but on the other hand it seems disconcertingly intan-
gible. To this day, debate continues about whether causation is a feature of 
the physical world or simply a convenient way to think about relationships 
between events. During the eighteenth and nineteenth centuries, statisti-
cal theory and methods enjoyed tremendous growth but for the most part 
turned a blind eye to causation. In 1911, Karl Pearson, inventor of the 
correlation coefficient, dismissed causation as “another fetish amidst the 
inscrutable arcana of even modern science.” But developments in the 1920s 
began to disentangle correlation and causation, and paved the way for the 
modern methods for inferring causes from observed effects. Before turning 
to these sophisticated techniques, it is useful to explore some of the prob-
lems surrounding correlation and causation and ways of resolving them.

A source of confusion about causation is that news reports about 
research findings often suggest causation when they should not. A causal 
claim may be easier to understand — compare “seat belts save lives” with 
“the use of seat belts is associated with lower mortality” — because it 
presents a cause (seat belts) acting directly (saving lives). It seems to 
tell a more compelling story than a correlational claim, which can come 
across as clumsy and indirect. But while a story that purports to explain 
a correlation might seem persuasive, a causal claim may not be justified. 
Consider the oft-cited research of the psychologist John Gottman and 
his colleagues about predicting divorce based on observations of couples 
in a conversation about their relationship and in a conflict situation. In 
a series of studies beginning in the 1990s, Gottman was able to predict, 
with accuracy as high as 94 percent, which couples would divorce within 
three years. Among the strongest predictors of divorce were contempt, 
criticism, stonewalling, and defensiveness. These are impressive findings, 
and have been widely reported in the media. Unfortunately, they have 
also been widely misinterpreted. Some newspaper and magazine articles 
have suggested to readers that these findings mean they can reduce their 
risk of divorce (or even “divorce-proof ” their marriages, as some put it) 
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by changing how they communicate, and in particular by reducing the 
problem behaviors that were identified. Such changes may well be helpful, 
but Gottman’s research does not substantiate this claim. His predictions 
were based on a correlation between observable behaviors and subsequent 
outcome. The correlation does not imply that the outcome must have been 
due to those behaviors. Nor does it imply that changing those behaviors 
would have changed the outcome. It is possible, for example, that defen-
siveness is a symptom of other problems in a marriage, and that reducing 
defensiveness would have limited benefit unless the underlying causes of 
the discord were addressed.

How can factors be correlated but not causally related? One reason is 
pure chance: Fisher’s association between apple imports and the divorce 
rate was just a coincidence. Today it is easy to generate such spurious cor-
relations. With the emergence of big data — enormous data sets collected 
automatically, combed for patterns by powerful computing systems — 
correlations can be mass-produced. The trouble is that many of them will 
be meaningless. This is known as the problem of “false discovery.” A small 
number of meaningful associations is easily drowned in a sea of chance 
findings. Statisticians have developed theories and tools to deal with the 
problem of chance findings. Perhaps best known is the p-value, which 
can be used to assess whether an observed association is consistent with 
chance, or conversely, as it is commonly put, that it is “statistically sig-
nificant.” At times, the idea of statistical significance becomes the source 
of misconceptions, including the belief that correlation does not imply 
causation unless the correlation is statistically significant. The flaw in this 
belief is easily seen in the context of large data sets, where an observed 
association is virtually guaranteed to be statistically significant. Sheer 
volume of data does not warrant a claim about causation.

Another reason why two factors may be correlated even though there 
is no cause-and-effect relationship is that they have a common cause. 
Examples of such “confounding,” as it is known, are all too common in 
the scientific literature. For example, a 1999 study published in Nature 
showed that children under the age of two who slept with night lights 
were more likely to have myopia. Other researchers later showed that 
myopic parents were more likely to keep their lights on at night. It may be 
that the parents were a common cause of both the use of night lights and, 
by virtue of genetic inheritance, the myopia passed on to their children.

In medical research, confounding can make effective treatments appear 
to be harmful. Suppose we review hospital records and compare the out-
comes of patients with a certain disease who did and did not receive a 
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new drug. This might sound like a good way to determine how well the 
drug works. However, it can easily result in what is called “confounding 
by indication”: certain biases may have influenced which patients received 
the new drug. For example, if the patients who got the new drug were the 
sicker ones, then even if the drug helps, the outcomes of the patients who 
received it may be worse than the outcomes of those who did not.

Confounding can also make ineffective treatments appear to be helpful. 
Suppose a patient suffers from a chronic disease whose severity waxes and 
wanes. When his symptoms are particularly bad he visits a quack healer 
and his symptoms usually improve within a week or two. The trouble is, 
the improvement is simply a result of the natural fluctuation of the illness. 
The flare-up of symptoms prompts the patient to visit the quack, but due 
to the natural course of illness, the flare-up is followed by improvement 
within a week or two. Confounding makes the visits to the quack healer 
appear effective.

Misleading correlations may also arise due to the way subjects are 
selected to be part of a study. For example, there is evidence that certain 
studies of an association between breast implants and connective tissue dis-
ease may have suffered from selection bias. Suppose participation in a study 
was greater for women with implants and also for women with connective 
tissue disease (perhaps these two groups were more likely to respond to 
a questionnaire than women from neither group). The study would then 
include a disproportionately large number of women with both implants 
and connective tissue disease, leading to an association even if there were 
no causation at all. Whenever the selection of subjects into a study is a com-
mon effect of both the exposure variable and the outcome, there is a risk of 
selection bias. It has been suggested that bias due to a common effect (selec-
tion bias) may be more difficult to understand than bias due to a common 
cause (confounding). This makes selection bias particularly problematic.

In the analysis of big data, selection bias may be especially perni-
cious because the processes that affect which individuals are included in 
or excluded from a database are not always apparent. Additionally, such 
databases are often spotty: for a variety of reasons, many records may be 
missing some data elements. In some cases, records that have missing 
values are automatically omitted from analyses, leading to another form 
of selection bias. In these cases, the associations detected may be nothing 
more than artifacts of the data collection and analysis.

So the presence of a correlation does not always mean there is a 
causal relationship. Perhaps more surprisingly, the reverse is true as 
well: the presence of a causal relationship does not always mean there is 
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a correlation. An example of this has been attributed to the economist 
Milton Friedman. Suppose a thermostat keeps your home at a constant 
temperature by controlling an oil furnace. Depending on the outside tem-
perature, more or less oil will be burned. But since the thermostat keeps 
the inside temperature constant, the inside temperature will have no cor-
relation with the amount of oil burned. The oil is what keeps the house 
warm — a causal relation — but it is uncorrelated with the temperature in 
the house. This type of situation arises when there is feedback in the sys-
tem (here the thermostat creates a “causal loop” between the temperature 
of the house and the furnace).

It is also possible for a positive correlation to accompany a negative 
causal relationship (or a negative correlation to accompany a positive caus-
al relationship). Suppose a certain investment strategy becomes popular 
among wealthy people, but it is actually not a good strategy and on aver-
age the people who try it lose money. Then people who use the strategy 
are on average wealthier than those who do not, but people who use the 
strategy are poorer than if they had not.

Sometimes, even in the absence of a causal relationship, correlations 
can still be extremely useful. Symptoms of illness are vital in arriving 
at a diagnosis; certain economic indicators may presage a recession; a 
student’s declining grades may be a sign of problems at home. In each 
of these cases, one or more “markers” can be used to identify an underly-
ing condition — be it an illness, an economic slump, or a family problem. 
Changing the marker itself may have no effect on the condition. For 
example, fever often precedes full-blown chickenpox, but while medica-
tions to reduce the fever may make the patient feel better, they have no 
impact on the infection.

Insurance companies are interested in correlations between risk factors 
and adverse outcomes, regardless of causation. For example, if a certain 
model of car is at higher risk of accident, then an insurance company will 
charge more to insure a car of that type. It could be that risk-takers favor 
that model, or perhaps the vehicle itself is simply dangerous (it might, for 
example, have a tendency to flip over). Whatever the explanation, from 
the insurance company’s perspective all that matters is that this type of 
car is expensive to insure. From other perspectives, however, causation is 
definitely important: if the goal is to improve public safety, it is crucial to 
identify factors that cause accidents. Sometimes, there is confusion around 
the term “risk factor”: on the one hand it may simply refer to a marker of 
risk (a model of car favored by risk takers), while on the other hand it may 
refer to a factor that causes risk (a car that is unsafe at any speed).

http://www.TheNewAtlantis.com


30 ~ The New Atlantis

Nick Barrowman

Copyright 2014. All rights reserved. See www.TheNewAtlantis.com for more information.

Finally, even if there is indeed a causal relationship between two fac-
tors, there is still the question of which is the cause and which is the effect. 
In other words, what is the direction of causation? By itself, a correlation 
tells us nothing about this. Of course the effect cannot come before the 
cause — except in science fiction novels and some arcane philosophical 
arguments. But depending on the type of study, the timing of cause and 
effect may not be obvious. For example, it has been claimed that active life-
styles may protect older people’s cognitive functioning. But some evidence 
suggests that the causal direction is the opposite: higher cognitive function-
ing may result in a more active lifestyle. Misidentification of the direction 
of causation is often referred to as “reverse causation” — although it’s the 
understanding that’s reversed, not the causation. When one event follows 
another, we are often tempted to conclude that the first event caused the 
second (referred to by the Latin phrase post hoc ergo propter hoc). But such an 
association may in fact be due to chance, confounding, or selection bias.

Causal claims should be subjected to scrutiny and debunked when they 
do not hold up. But in many cases there may not be definitive evidence one 
way or the other. Suppose a correlation (for example between exposure to 
a certain chemical and some disease) is used to support a claim of causa-
tion in a lawsuit against a corporation or government. The defendant may 
be able to avoid liability by raising questions about whether the correla-
tion in fact provides evidence of causation, and by suggesting plausible 
alternative explanations. In such situations, the assertion that correlation 
does not imply causation can become a general-purpose tool for neutraliz-
ing causal claims. Ultimately, this raises questions about where the burden 
of proof in a causal controversy should lie. As we will see, the important 
point is that this is a discussion worth having.

Big Data and Asking “What If ?”
Some people are tempted to sidestep the problems of distinguishing cor-
relation from causation by asking what is so important about causation. 
If two factors are correlated, isn’t that enough? Chris Anderson, author 
of the bestseller The Long Tail (2006) and former editor-in-chief of Wired 
magazine, apparently thinks so. In his 2008 article “The End of Theory: 
The Data Deluge Makes the Scientific Method Obsolete,” Anderson 
argued that in the age of big data, we can dispense with causation:

This is a world where massive amounts of data and applied mathemat-
ics replace every other tool that might be brought to bear. Out with 
every theory of human behavior, from linguistics to sociology. Forget 
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taxonomy, ontology, and psychology. Who knows why people do what 
they do? The point is they do it, and we can track and measure it 
with unprecedented fidelity. With enough data, the numbers speak for 
themselves. . . .

Correlation supersedes causation, and science can advance even 
without coherent models, unified theories, or really any mechanistic 
explanation at all.

Anderson suggests that correlations, easily computed from huge 
quantities of data, are more important and valuable than attempts to 
develop explanatory frameworks. It is true that correlations can be valu-
able, especially to obtain predictions — provided, of course, that the cor-
relations are not simply due to chance. But what they cannot do is tell us 
what will happen if we intervene to change something. For this, we need 
to know if a causal relationship truly exists.

Suppose a study finds that, on average, coffee drinkers live longer than 
people who don’t drink coffee. The ensuing headlines proclaim that “coffee 
drinkers live longer,” which would be a true statement. But someone who 
hears about this study might say, “I should start drinking coffee so that 
I’ll live longer.” This conclusion has great appeal, but it is founded on two 
related misunderstandings.

First, there is an implicit assumption that you only have to start 
drinking coffee to be just like the coffee drinkers in the study. The coffee 
drinkers in the study were likely different from the people who were not 
coffee drinkers in various ways (diet, exercise, wealth, etc.). Some of these 
characteristics may indeed be consequences of drinking coffee, but some 
may be pre-existing characteristics. Simply starting to drink coffee may 
not make you similar to the coffee drinkers in the study.

The second misunderstanding turns on an ambiguity in the expression 
“live longer.” What comparison is being made here? The study found that, 
on average, members of one group (coffee drinkers) live longer than mem-
bers of another group (people who don’t drink coffee). But when people 
say that doing something will make you live longer, they generally mean 
that it will make you live longer than if you didn’t do it. In other words, the 
relevant comparison is not between the results experienced by people who 
take one course of action and people who take another, but between the 
results of two alternative courses of action that an individual may take.

So if a person starts drinking coffee, then to determine the effect of 
coffee drinking on the length of her life, you’d need to know not only her 
actual lifespan but also her lifespan if she hadn’t started drinking coffee. 
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This is known as a “counterfactual” because it requires considering some-
thing other than what in fact happened. Counterfactuals play a central 
role in most modern theories of causation.

In everyday life, people routinely make causal claims that would 
require a counterfactual analysis to confirm. Thanks to a new diet, your 
neighbor lost thirty pounds. A coworker was promoted because she is 
related to the boss. Your favorite team performed poorly this year because 
of the inept manager. But did your neighbor not also take up jogging? Is 
that coworker not a top performer who genuinely deserved a promotion? 
Were the players on that team not some of the worst in the league? To 
assess the claim that A caused B we need to consider a counterfactual: 
What would have happened if A had been different? To evaluate whether 
your neighbor’s dieting caused his weight loss, we need to consider what 
would have happened had he not dieted, and so on. Hume put it this way: 
“We may define a cause to be an object, followed by another. . . , where, if the 
first object had not been, the second never had existed.”

Counterfactuals get to the heart of what makes causation so perplex-
ing. We can only observe what actually happened, not what might have 
happened. An evaluation of a causal effect is thus not possible without 
making assumptions or incorporating information external to the con-
nection in question. One way to do this is by using a substitute for the 
unobservable counterfactual. You might know someone else who took 
up jogging and did not change his diet. How did this work for him? You 
might recall another top performer at work, who does not happen to be 
related to the boss, and who has been denied a promotion for years. You 
might recall that your team performed poorly in previous years with dif-
ferent managers.

While we can never directly observe the causal effect that we suspect 
to be responsible for an association, we are able to observe the association 
itself. But in the presence of confounding or selection bias, the associa-
tion may be quite misleading. To answer a causal question, counterfactual 
reasoning — asking “what if ?” — is indispensable. No amount of data or 
brute computing power can replace this.

Experiments and Observations
The threats of confounding and selection bias and the complexities of 
causal reasoning would seem to be formidable obstacles to science. Of 
course, scientists have a powerful tool to circumvent these difficulties: the 
experiment. In an experiment, scientists manipulate conditions — holding 
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some factors constant and varying the factor of interest over the course of 
many repetitions — and measure the resulting outcomes. When it is pos-
sible to do this, valid inferences can be obtained about a cause and its effect. 
But as scientific techniques extended into the social sciences in the nine-
teenth century, experiments came to be conducted in settings so complex 
that it was often not possible to control all relevant factors.

The American philosopher and logician Charles Sanders Peirce is often 
credited with having introduced, in the 1884 article “On Small Differences 
of Sensation,” an important tool of experimental design: randomization. 
In an experiment on the human ability to correctly determine, by pressure 
on one finger, which of two slightly different weights was heavier, Peirce 
and his assistant Joseph Jastrow used a shuffled deck of cards to random-
ize the order in which test subjects would experience either an increase 
or a decrease in weight over the course of successive tests. Beginning in 
the 1920s, Fisher further developed and popularized the ideas of random-
ized experiments in agriculture. A challenge in agricultural studies is 
that within a field there is always some uncontrollable variation in soil 
quality (pH, moisture, nutrients, etc.). Random assignment of treatments 
(fertilizer, seed varieties, etc.) to different plots within the field ensures the 
soundness of an experiment.

But it was not until the late 1940s that the randomized controlled trial 
(RCT) was introduced in medicine by English epidemiologist and statisti-
cian Austin Bradford Hill in a study on streptomycin treatment of pul-
monary tuberculosis. The RCT was not only a significant innovation in 
medicine; it also helped usher in the current era of evidence-based practice 
and policy in a wide range of other fields, such as education, psychology, 
criminology, and economics.

In medicine, the design of the RCT is that eligible patients who 
consent to participate in a study are randomly assigned to one of two 
(or sometimes more) treatment groups. Consider an RCT comparing an 
experimental drug with a conventional one. All patients meet the same 
criteria for inclusion into the study — for instance presence of the disease 
and aged 50 or older — and end up in one group or the other purely by 
chance. The outcomes of patients who received the conventional drug 
can therefore be used as substitute counterfactual outcomes for patients 
who, by chance, received the experimental drug — that is, the outcomes 
of group A can be thought of as what would have happened to group B if 
group B had received group A’s treatment. This is because the known fac-
tors, such as sex and age, are comparable between the two groups (at least 
on average with a large enough sample). But also any unknown factors, 
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perhaps the amount of exercise or sleep the patients get, are comparable. 
None of the known or unknown factors influenced whether a patient 
received the conventional or the experimental drug. RCTs thus provide 
an opportunity to draw causal conclusions in complex settings with many 
unknown variables, with only limited assumptions required.

However, RCTs are not always an option. For one thing, they can 
only be used to evaluate interventions, such as a drug, but many medi-
cal questions concern diagnosis, prognosis, and other issues that do not 
involve a comparison of interventions. Also, RCTs of rare diseases may 
not be feasible because it would simply take too long to enroll a sufficient 
number of patients, even across multiple medical centers. Finally, it would 
be unethical to investigate certain questions using an RCT, such as the 
effects of administering a virus to a healthy person. So in medicine and 
other fields, it is not always possible to perform an experiment, much less 
a randomized one.

In fact, studies that do not involve experiments (called “observational” 
to emphasize that no experimental manipulation is involved) are very 
common. It became scientifically accepted that smoking causes — and is 
not only correlated with — lung cancer not because of an RCT (which 
surely would have been unethical), but rather due to an observational 
study. The British Doctors Study, designed by Richard Doll and Austin 
Bradford Hill, lasted from 1951 to 2001, with the first important results 
published as early as 1954 and 1956. Over 34,000 British doctors and their 
smoking habits were surveyed over time, and the results clearly showed 
rising mortality due to lung cancer as the amount of tobacco smoked 
increased, and declining mortality due to lung cancer the earlier people 
quit smoking. Some other examples of observational studies are surveys 
of job satisfaction, epidemiological studies of occupational exposure to 
hazardous substances, certain studies of the effects of global warming, 
and comparisons of consumer spending before and after a tax increase.

Of course, when the goal is to draw causal conclusions as opposed to 
simply detecting correlations, observational studies — because they are 
not randomized — face the kinds of obstacles randomization is designed 
to avoid, including confounding and selection bias. Different branches of 
science have wrestled with these issues, according to the types of prob-
lems commonly encountered in their respective disciplines. For instance, 
in econometrics — the use of applied mathematics and statistics in ana-
lyzing economic data — the focus has been on the problem of endogeneity, 
which is, simply put, a correlation between two parts within a model that 
would ideally be independent of one another, a problem closely related 
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to confounding. Protection against such biases has been a major focus in 
the design of observational studies. One of the fundamental limitations of 
many of today’s extremely large databases often used for observational 
studies is that they have rarely been collected with such goals or prin-
ciples in mind. For instance, naïve analyses of databases containing super-
market loyalty card records or social network behavior may be prone to 
various biases. There has long been interest in estimating the strength 
of ties in social networks, both “real world” and online. One indicator 
of “tie strength” is frequency of contact, used for example in analysis of 
cell phone call patterns. But frequency of contact is a poor measure of tie 
strength — a case of what is called “interpretational confounding.” One 
aspect of this is that in many cases we have frequent contact with people 
with whom we have very weak ties, such as routine but perfunctory inter-
actions like making a daily call to a taxi company.

Because of concerns about confounding, the analysis of observational 
studies has traditionally involved statistical techniques to “adjust” for 
known or suspected confounders. For example the incidence of Down 
syndrome is associated with birth order, but maternal age may be a con-
founder since maternal age increases with birth order. By examining the 
relationship between Down syndrome and birth order separately within 
birth order groups, known as a “stratified analysis,” the confounding effect 
of maternal age may be removed. This type of approach has its challenges; 
even if it is successful, the possibility remains that some confounders have 
not been included in the adjustment. This problem, known as “unmea-
sured confounding,” fundamentally limits the degree of certainty with 
which conclusions can be drawn from observational data.

Unfortunately, it is all too easy to treat correlations from observa-
tional studies as if they were causal. Suppose, for example, that in a certain 
population, 50 percent of people live to the age of 80. But of those who 
regularly exercise, that figure is 70 percent. So, if you select a person at 
random from the whole population, there is a 50 percent probability that 
person lives to 80, but if you select only from those who regularly exer-
cise, the probability increases to 70 percent. You might be tempted to say 
that “exercise increases the probability that a person lives to the age of 
80.” But this is a causal statement — it credits exercise for the increased 
probability — that is not strictly speaking warranted. It would be more 
accurate to say this: “Compared to the rest of the population, a person who 
exercises has an increased chance of living to the age of 80.” It is possible 
that this increase is in fact not due to exercise but to other factors, such 
as wealth or diet.
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The weaknesses of observational studies are often emphasized when 
legal liability hinges on the question of causation. For example, during 
lawsuits against the tobacco industry in the 1990s involving the effects 
of secondhand smoke, expert witnesses often argued that observational 
studies could not be used to demonstrate causation. In cases where an 
experiment is not feasible or ethical, this attitude would seem to lead to an 
impasse in our ability to make a causal statement. But experiments are not 
necessarily the last word on causation in science, nor must observational 
studies remain silent.

Causation in the Twentieth Century
Over the course of the last several centuries, increasingly sophisticated 
statistical methods have been devised for drawing quantitative conclu-
sions from observations. However, the distinction between correlation and 
causation was not always clearly made, and it was only in the twentieth 
century that rigorous attempts to draw causal conclusions from observed 
data began to develop in earnest. Various models and methods have been 
created to make causal inferences possible — to infer, based on observed 
effects, a probable cause for an event.

Three different approaches to causal inference had their origins in the 
1920s. In a 1921 paper titled “Correlation and Causation,” published in the 
Journal of Agricultural Research, the American geneticist Sewall Wright 
introduced a method known as “path analysis.” In complex systems 
involving many uncontrollable and perhaps some unknown correlated 
factors — for instance when studying the weight and health of newborn 
animals — this method tries to measure the direct influence of each of the 
correlations and, as Wright explained, to find “the degree to which varia-
tion of a given effect is determined by each particular cause.” In order 
to do this, diagrams of variables connected by arrows are constructed, 
showing the various correlations within the system. (See Figure 1.) Based 
on these diagrams and the observed correlations between the variables, 
systems of equations can be constructed. The equations are then solved 
for the “path coefficients,” which represent the direct effects of variables 
on each other.

A generalization of path analysis known as “structural equation mod-
eling” was subsequently developed. One application of this method is in 
studying mediation, in which a variable lies on the path between a cause 
and an effect. For example, stress can cause depression, but stress can 
also cause rumination, which can in turn cause depression. Rumination 
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is thus a mediator of the causal effect of stress on depression. We might 
then wonder how much of the effect of stress on depression is mediated by 
rumination — that is, how much of the effect is on the indirect path between 
stress and depression (via rumination), compared to the direct path. The 
answer could help to determine whether interventions that target rumi-
nation might be more effective in reducing depression than interventions 
that target stress.

A second approach to causal inference had its origins in 1923, with a 
paper by the Polish statistician Jerzy Neyman introducing an early counter-
factual account of causality in agricultural experiments. His methods were 
limited to experiments but were extended by Harvard statistician Donald 
Rubin in the 1970s to observational studies. Rubin’s causal model was 
based on the idea of “potential outcomes” — essentially counterfactuals.

An example will help illustrate again the problem with causation in 
observational studies we have been discussing. Consider patients who 
receive either treatment A or B, and are either cured or not. For each 
patient there is an outcome for treatment A and an outcome for treatment 
B, but only one of these outcomes is actually observed and the other one 
is merely potential. The causal effect for an individual patient is the differ-
ence between these two outcomes — cured or not cured depending on the 
treatment. But because it is not possible to observe both of the two poten-
tial outcomes — that is, a given patient cannot both receive a treatment 
and not receive it at the same time — the causal effect for an individual 
cannot be estimated. This is called the “fundamental problem of causal 
inference,” and on the face of it this would seem to be an insurmountable 

Fig. 1. The kind of diagram used in path analysis. In this example, taken 
from Sewall Wright’s original 1921 paper, the letters each stand for 
various factors related to crops’ water needs. For example, T stands for 
temperature, and R represents solar radiation (hours of sunlight).

http://www.TheNewAtlantis.com


38 ~ The New Atlantis

Nick Barrowman

Copyright 2014. All rights reserved. See www.TheNewAtlantis.com for more information.

obstacle. However, while it is not possible to estimate an individual causal 
effect, it is possible — provided certain assumptions hold — to measure the 
average causal effect across a number of patients.

If the patients in question were enrolled in a randomized controlled 
trial that ran without a hitch (for example, no patients dropped out), then 
the necessary assumptions are easily satisfied. As discussed earlier, the 
outcomes of the patients in the two treatment groups can serve as substi-
tute potential outcomes.

But suppose that the patients were not randomly assigned to treat-
ment groups, and that this is instead an observational study. Unlike in 
an RCT, where patients in the two groups are likely to be very similar, 
in an observational study there may be substantial imbalances (in age, 
sex, wealth, etc.) between groups. There are a number of ways to address 
this problem using Rubin’s framework. Sometimes imbalances between 
groups can be dealt with using matching techniques that ensure the two 
groups are roughly similar. A related and more complex method is to esti-
mate, for each patient, the probability that the patient would receive for 
example treatment A, given the patient’s characteristics. This estimate is 
known as a “propensity score,” first discussed in a 1983 paper that Rubin 
coauthored. Patients who received treatment B can then be matched with 
patients who received treatment A but who had similar propensity scores. 
This provides a general scheme for obtaining substitute counterfactu-
als that make causal inferences possible. An important caveat, however, 
is that this only works if all relevant variables — any of which could 
be confounders — are available. For example, the relationship between 
alcohol advertising and youth drinking behavior may be confounded by 
unmeasured factors such as family history and peer influence.

A third approach to causal inference, known as “instrumental vari-
ables analysis,” was introduced by economist Philip Wright (father of 
Sewall Wright) in his 1928 book The Tariff on Animal and Vegetable Oils. 
His method has been widely used in the field of econometrics, but more 
recently has been applied in other fields. In one application of it in a 
1994 study, the effectiveness of treating heart attacks using aggressive 
medical techniques (catheterization and revascularization) was evalu-
ated based on observational data from a group of Medicare beneficia-
ries. Those who were treated aggressively had much lower mortality 
rates than those who were not. It is easy to jump to the conclusion that 
aggressive treatment reduces mortality rates. However, as the study 
explained, the aggressively treated patients differed from the others in 
numerous ways — for instance, they were younger. And they may have 
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also differed in ways that were not measured, such as the severity of their 
heart attacks. The risk is that — once the measured variables such as 
age are adjusted for, using a technique like matching — the unmeasured 
variables could still substantially bias results. Had the patients been ran-
domized to receive different treatments, it would have been much easier 
to estimate the causal effect of aggressive treatment. But suppose a vari-
able could be identified that was correlated with the type of treatment 
received (aggressive or not aggressive), did not directly affect the out-
come, and was not likely to be correlated with any confounding variables. 
Such an “instrumental variable” can be used to form groups of patients 
such that patient characteristics are similar between groups, except that 
the likelihood of receiving the treatment in question varies between 
groups. In this way, an instrumental variable can be considered to be a 
sort of natural randomizer. In the heart attack study, patients who lived 
closer to hospitals that offered aggressive treatment were more likely to 
receive such treatment. The authors of the study realized that an instru-
mental variable could be based on a patient’s distance to such a hospital 
compared to the distance to their nearest hospital. This variable would 
not be expected to affect mortality except through the type of treatment 
received, nor would it be expected to affect other possible confounding 
variables. Provided these assumptions were valid, the instrumental vari-
able approach could overcome unmeasured confounding to allow causal 
conclusions to be drawn. In this case, the instrumental variable analysis 
showed that aggressive treatment had the effect of lowering mortal-
ity only to a very small degree, in striking contrast to estimates using 
more conventional statistical methods. Far more important for lowering 
mortality, the study explained, was that patients received care within 
twenty-four hours of admission to the hospital.

Another application of the instrumental variable approach is to flawed 
randomized controlled trials. Consider an RCT of a drug in the form of 
a pill with an inactive pill (placebo) used as the control. If such a study 
is executed perfectly, it provides the best basis for drawing a conclusion 
about whether the drug affects patients’ outcomes. The trouble is that few 
RCTs are pulled off without a hitch. Common problems include patients 
dropping out or simply not taking all of their pills, which can introduce 
bias into the results. But even with these biases the random assignment 
to either the active pill or the placebo can be used as an instrumental 
variable that predicts the treatment actually received. Provided the nec-
essary assumptions hold, an instrumental variable analysis can be used 
to give a valid estimate of the drug’s effect. Thus even in experimental 
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settings, it may be necessary to apply methods of causal inference devel-
oped for observational studies.

As attractive as the instrumental variables approach is, it is not a 
panacea. Some of the key assumptions required cannot be tested, and seri-
ous biases can arise if they are violated. Notwithstanding its limitations, 
however, the instrumental variables approach can still be a powerful tool 
for causal inference.

Graphical Methods for Causal Inference
The late 1980s saw a resurgence of interest in refining methods of causal 
inference with the help of diagrams like those used in path analysis and 
structural equations modeling. These newer diagrams are known as 
“directed acyclic graphs” (DAGs) and have been widely used in computer 
science and epidemiology. The graphs are made up of nodes (commonly 
shown as circles) representing variables, connected by one-way arrows, 
such that no path leads from a node back to itself, which would represent 
a causal feedback loop (hence “acyclic”). (See Figure 2.) Powerful theorems 
about DAGs are available thanks to a branch of mathematics known as 
graph theory, used for modeling and analyzing relations within biological, 
physical, social, and information systems.

In order to specify a DAG for a particular problem, it is necessary to 
have some knowledge of the underlying causal structure. However, experts 
may disagree on the causal structure, and for a particular problem several 
different DAGs may be considered. Causal inferences obtained using this 
approach are always dependent on the particular assumptions encoded in a 
DAG. For example, when there is no arrow between two nodes, this indi-
cates that there is no direct causal relationship between the variables rep-
resented by those nodes. Such an assumption can generate disagreement 
between experts, and may have a decisive effect on the analysis.

Before the era of DAGs, a number of different approaches for recog-
nizing confounders were used. These have since been shown to be unreli-
able. For instance, some procedures for identifying confounders based on 
associations between variables may fail to identify certain confounders 
and wrongly identify others. This last point is critical because adjust-
ing for the wrong variables could induce selection bias. A DAG encodes 
all the information necessary to determine which variables should be 
adjusted for, so as to remove confounders without inducing selection bias. 
However, except in the simplest cases, it is very difficult to determine by 
visual inspection of a DAG which variables should be adjusted for; using 

http://www.TheNewAtlantis.com


Summer/Fall 2014 ~ 41

Correlation, Causation, and Confusion

Copyright 2014. All rights reserved. See www.TheNewAtlantis.com for more information.

graph theory, algorithms have been developed that answer this question 
and others.

With the help of DAGs, the conditions that give rise to selection bias 
and confounding have been pinpointed, thereby settling an important 
question in the analysis of observational data.

Simpson’s Paradox
Directed acyclic graphs have helped to solve other longstanding puzzles. 
Consider observational data on the relationship between a certain treat-
ment and recovery from an illness. Suppose that patients who are treated 
are more likely to recover than those who are not. But when we examine 
the data on male and female patients separately, it turns out that among 
the males, those who are treated are less likely to recover; similarly, females 
who are treated are also less likely to recover. This reversal — known as 
Simpson’s paradox after the statistician Edward H. Simpson — may seem 
surprising, but it is a real phenomenon. This kind of situation can arise if 
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Fig. 2. An example of a directed acyclic graph 
(DAG). This figure depicts the mediation of 
the effect of sodium on cardiovascular disease 
(CVD) through blood pressure (BP). Reprinted 
with permission from the October 2013 issue of 
Significance (Nancy R. Cook, “Salt: How much 
less should we eat for health? Understanding 
the recent IOM report,” Significance 10, no. 5 
[2013]: 6–10).
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the patients who receive treatment are disproportionately male, and the 
recovery rate for females is much lower than for males. Sex is thus a con-
founder of the relationship between treatment and recovery in this case, 
and the sex-specific results should be used for decision-making about the 
treatment’s effectiveness: the treatment is not helpful.

But Simpson’s paradox has another surprising aspect. Suppose that the 
treatment is suspected of having an effect on blood pressure, and instead 
of breaking the data down by sex, the breakdown is by high versus low 
blood pressure one week into treatment (or at roughly the same time in 
the untreated group). Imagine that the data of the two groups — high and 
low blood pressure — are like the data of the two groups broken down by 
sex in the earlier scenario. As before, the patients who are treated are more 
likely to recover than those who are not, yet within both of the subgroups 
(high and low blood pressure) the patients who are treated are less likely to 
recover. But in this case blood pressure, unlike sex, is not a confounder of 
the relationship between treatment and recovery, since it is not a common 
cause of treatment and recovery. In this scenario, the overall results rather 
than the subdivided results should be used for decision-making.

The paradox that today carries Simpson’s name was first identified 
at the beginning of the twentieth century, but Simpson examined it in 
detail in a 1951 paper and noted that the “sensible” interpretation of the 
data should sometimes be based on the overall results and sometimes on 
the subdivided data. However, Simpson’s analysis left unclear what the 
general conditions are for when to use the overall results and when the 
subdivided data. All he could show was that considering the context of 
the data was essential for interpreting it. No statistical method or model 
was available for solving the problem. In a 2014 paper published in The 
American Statistician, one of the most notable researchers in this field, 
Israeli-American computer scientist Judea Pearl, has provided an answer 
to this longstanding question. He showed that in situations where there 
is a Simpson’s-paradox-style reversal, if a DAG can be specified, causal 
graph methods can determine when to use the overall results and when 
to use the subdivided data.

Reflecting on Simpson’s contribution, Pearl notes that Simpson’s 
thinking was unconventional for his time: “The idea that statistical data, 
however large, is insufficient for determining what is ‘sensible,’ and that 
it must be supplemented with extra-statistical knowledge to make sense 
was considered heresy in the 1950s.” Causal questions cannot be answered 
simply by applying statistical methods to data. In particular, subject- 
matter knowledge is critical. And with the development of DAGs and 
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other tools we now have formal procedures to bring subject-matter 
knowledge to bear on these problems.

The Eternal Mystery of Cause
As applications of causal inference are becoming increasingly common in 
a variety of fields — not only in computer science and medicine but also 
in sociology, economics, public health, and political science — it is appro-
priate to consider the achievements and limitations in this field over the 
course of the near-century since Sewall Wright’s groundbreaking con-
tributions to causal inference, his path analysis. The advances since the 
1920s have truly been transformative, with the development of ever more 
sophisticated methods for solving complex problems, especially in fields 
such as epidemiology that rely largely on observational data rather than 
experiments. Much progress has been made in untangling the difficul-
ties surrounding counterfactuals — of finding ways to know what would 
have happened if a given intervention, such as a medical treatment, had 
not occurred. Tools like the randomized controlled trial have become so 
widely accepted that it is hard to imagine our world without them.

Meanwhile, questions of causation — what it is, how it differs from 
correlation, how our best statistical methods try to answer these ques-
tions — remain obscure to most, especially as news reports often play 
fast and loose with cause and effect. And while there has been significant 
progress toward integrating the major approaches to causal inference, no 
grand unified theory has arisen. Philosophers, too, continue to wrestle 
with causation, both at a foundational level — for instance debating theo-
ries of causation and sorting out the difference between causally related 
and causally unrelated processes — and in particular areas, such as the 
question of free will and whether our thoughts and actions are neuro-
chemically caused or freely chosen. Psychologists study the question of 
causal attribution — how, as individuals, we identify and explain the causes 
of events and behavior. Historians strive to ascertain the causes of histori-
cal events. And in our personal lives as well as in the law we often struggle 
with questions of causation and personal and legal responsibility.

One of the greatest challenges is the intricacy of the causal relation-
ships that underlie so many phenomena: What causes today’s weather? 
What are the effects of violent video games? What will be the results of a 
tax increase? Causal diagrams have made a substantial contribution to our 
ability to analyze such complex situations — but they can yield unreliable 
conclusions if the causal structure is incorrectly specified.
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Hume’s point stands: correlation can be directly observed, but never 
the causal link between one event and another. Causal inference depends 
on more than just the data at hand; the validity of the conclusions always 
hinges on assumptions — whether they are based on external evidence, 
expert background knowledge, theory, or guesswork. Curiously, the cur-
rent excitement about big data has encouraged in some people the oppo-
site notion. As Chris Anderson writes:

Petabytes allow us to say: “Correlation is enough.” We can stop looking 
for models. We can analyze the data without hypotheses about what it 
might show. We can throw the numbers into the biggest computing 
clusters the world has ever seen and let statistical algorithms find pat-
terns where science cannot.

Such grandiose visions suggest a failure to understand the limits of 
brute-force computation. While it is possible to detect useful correlations 
by applying sheer computing power to massive databases, by themselves 
correlations cannot answer questions about the effectiveness of interven-
tions nor can they explain underlying causal mechanisms, knowledge of 
which is often critical for making decisions, most obviously perhaps in 
medicine where our health and our lives are at stake. To address such 
issues we need to judiciously consider causation, and that is not a matter 
of brute force.
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